Aii810, a Novel Cold-Adapted N-Acylhomoserine Lactonase Discovered in a Metagenome, Can Strongly Attenuate Pseudomonas aeruginosa Virulence Factors and Biofilm Formation
نویسندگان
چکیده
The pathogen Pseudomonas aeruginosa uses quorum sensing (QS) to control virulence and biofilm formation. Enzymatic disruption of quorum sensing is a promising anti-infection therapeutic strategy that does not rely on antibiotics. Here, a novel gene (aii810) encoding an N-acylhomoserine lactonase was isolated from the Mao-tofu metagenome for the first time. Aii810 encoded a protein of 269 amino acids and was expressed in Escherichia coli BL21 (DE3) in soluble form. It showed the highest activity at 20°C, and it maintained 76.5% of activity at 0°C and more than 50% activity at 0-40°C. The optimal pH was 8.0. It was stable in both neutral and slightly alkaline conditions and at temperatures below 40°C. The enzyme hydrolyzed several ρ-nitrophenyl esters, but its best substrate was ρ-nitrophenyl acetate. Its kcat and Km values were 347.7 S-1 and 205.1 μM, respectively. It efficiently degraded N-butyryl-L-homoserine lactone and N-(3-oxododecanoyl)-L-homoserine lactone, exceeding hydrolysis rates of 72.3 and 100%, respectively. Moreover, Aii810 strongly attenuated P. aeruginosa virulence and biofilm formation. This enzyme with high anti-QS activity was the most cold-adapted N-acylhomoserine lactonase reported, which makes it an attractive enzyme for use as a therapeutic agent against P. aeruginosa infection.
منابع مشابه
A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans
In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by...
متن کاملEfficacy of AiiM, an N-acylhomoserine lactonase, against Pseudomonas aeruginosa in a mouse model of acute pneumonia.
Quorum sensing (QS) in Pseudomonas aeruginosa regulates the production of many virulence factors and plays an important role in the pathogenesis of P. aeruginosa infection. N-acyl homoserine lactones (AHL) are major QS signal molecules. Recently, a novel AHL-lactonase enzyme, AiiM, has been identified. The aim of this study was to evaluate the effect of AiiM on the virulence of P. aeruginosa in...
متن کاملBacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1.
In this study, we investigated the biotherapeutic potential of previously isolated quorum quenching (QQ) bacteria. Some of them produce and secrete small compounds that inhibit quorum sensing (QS), others quench QS by enzymatic degradation of N-acylhomoserine lactones (AHLs). The supernatant of cultures of these isolates was tested for inhibitory properties against P. aeruginosa PAO1 biofilms. ...
متن کاملEffects of Sub-inhibitory Concentrations of Essential Oils of Mentha spicata and Cumminum cyminum on Virulence Factors of Pseudomonas aeruginosa
Background : Pseudomonas aeruginosa is one of important opportunistic pathogen, that cases serious infections . It produces many virulence factors, and this bacterium usually is resistance against antimicrobial agents. Objective :The aim of this study was evaluate the effects of sub-MICs of essential oils of Mentha spicata and Cumminum cyminum on alginate production, biofilm formation, swim...
متن کاملPseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume
Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1...
متن کامل